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Abstract

In this paper, we study the portfolio optimization problem formulated by Lacker and

Zariphopoulou [5]. They formulate a finite time horizon model that allows agents to

be competitive, measuring their CRRA utility not only by their absolute wealth but

also relative performance compared to the average of other agents. We extend this

model to include an individual weight that an agent may place on each other agent

should they want to compete. We find the optimal control of this problem by deriving

the HJB equation then prove it is a Nash Equilibrium by showing it is a fixed point.

To find the optimal control in the graphon case, we first restrict the graphon to be

continuous then approximate the discontinuous graphon with continuous ones to use

this result. To conclude, we analyze the behavior of the Nash Equilibrium investment

strategy through simulations and compare with prior results.
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Chapter 1

Introduction

Today, as financial markets become more complex and interconnected, the pursuit

of optimal investment strategies has never become more important. Whether it be

individual investors or institutional investors, who manage important funds such as

pension funds or insurances, each seek to maximize their reward. Typically, we see

that this is not so straightforward a problem to solve as maximizing reward comes at

the cost of incurring high volatility. That is, while we can maximize our reward, we

also have a very high downside, thus what most investors pursue is maximal reward

while minimizing risk. This balance between risk and reward is achieved differently

for various investors: those that are more risk tolerant can see higher expected reward

but also a higher downside risk in the case that their investments rapidly decline.

Clearly, this optimal investment problem is rooted in decision making, a funda-

mental and important aspect of life. This type of decision making motivates an entire

class of problems known as optimal control problems. Such problems vary from min-

imizing fuel consumption for a rocket landing in space to determining the dynamic

price for a new product being introduced into the market. The first of these problems

has historical importance: it was widely studied during the race to the moon in the

50s and 60s [2]. To formulate each of these problems, given the dynamics of a system,
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we pick variables called controls at each time step. We choose these decision variables

based on the information that is available in order to optimize some objective. In

the rocket problem, given the dynamics of the rocket moving through space, we may

pick α(t) at each time step t, where this represents the thrust at time t achieved by

burning fuel. By formulating this optimization problem as in [2], we find that it is

optimal to use either the full thrust or not use thrust at all.

Overall, it is clear that this class of problems allows for powerful modeling in

decision making problems; therefore, we use this to model the optimal investment

problem. Here, the controls we define are the proportion we invest in risky assets

at each time step. The goal thus of our research is to develop a model to provide

this optimal strategy for investors, who are individually competitive with one another

and, in general, have varying attitudes about competition. Doing so not only provides

important results in an economic sense but contributes to the field of graphon games.
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Chapter 2

Literature Review

In this section, we begin by reviewing studies of the single investor optimal invest-

ment problem, classically known as Merton’s problem. We expand the setting by

considering n investors who seek to optimize investments as well as outperform other

investors, then finally look at a continuum of investors who seek to do the same.

2.1 Merton’s Portfolio Problem

In 1969, Robert Merton produced his groundbreaking paper “Lifetime Portfolio Se-

lection under Uncertainty: The Continuous-Time Case” which formulated the single

investor optimal investment problem as well as produced a solution [7]. Note that

in his paper, Merton uses different notation; however, for consistency, we write the

equations using the same notation as in the remainder of this paper.

We first delve into the model itself as gaining intuition for this is essential to

understanding the dynamics in subsequent sections. Merton’s problem investigates a

singular investor who seeks to maximize their terminal expected utility by investing

in a risky asset and a riskless asset. The riskless asset, normally thought of as a bond,
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has price S0
t that evolves, with fixed interest rate r, according to the following:

dS0
t = rS0

t dt. (2.1)

The risky asset, traditionally thought of as a stock, has price evolution according to

the following stochastic differential equation:

dSt = µStdt+ σStdWt, (2.2)

where µ > 0 is a constant notating the drift rate of the price process, σ > 0 is also a

constant representing the volatility of the price, andW is a standard Brownian motion

on a filtered probability space. Now define ct as the investor’s consumption per unit

of wealth at time t, where we assume ct ∈ [0, 1]. Moreover, let πt be the proportion

of wealth (potentially negative) invested in the stock at time t, taking values in some

closed, convex subset of R, say A. Consequently, 1− πt is the proportion invested in

bonds at time t, thus we have the investor’s wealth process as:

dXt =
Xtπt
St

dSt +
Xt(1− πt)

S0
t

dS0
t −Xtctdt.

Intuitively, the investor buys Xtπt/St shares of stocks with Xtπt of their wealth given

the price St per share. The same reasoning holds true for the number of bonds the

investor buys. Now, substituting Equation (2.1) and Equation (2.2) for the bond and

stock price processes respectively then rearranging, we have:

dXt = Xt(πtµ+ (1− πt)r − ct)dt+XtπtσdWt.

With this wealth process, Merton formulates the optimization objective of an
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agent, given some terminal time T , utility function U , and discount rate ρ as:

max
(π,c)∈A×C

E
[∫ T

t

e−ρsU(csXs)ds+B(XT , T )

]

where A and C are the sets where the strategies take value in. Moreover, B is defined

by Merton as the bequest valuation function written as ϵ1−γe−ρTU(XT ).
1 Here, the

parameter γ ∈ [0, 1) is the risk aversion and the parameter ϵ allows us to scale the

utility of the bequest in comparison to the utility from consumption. Since Merton

specifies that 0 < ϵ≪ 1, we know that the agent derives significantly less utility from

wealth left as a bequest than from wealth consumed.

To find a solution to this optimization problem, first consider an agent with con-

stant relative risk aversion (CRRA) utility, where we may see that 1− γ = 1/δ is the

Pratt measure of relative risk aversion:2

U(x; γ) =


1
γ
xγ, if γ ̸= 0

log(x), if γ = 0.

The solution to the problem over a finite time horizon (i.e. T is finite) or the optimal

fraction invested in stocks π∗(t) as well as the optimal consumption rate c∗(t) was

derived using Bellman’s Principle of Optimality.3 The solution is as follows:

π∗ =
µ− r

σ2(1− γ)
and c∗(t) =


1

1+(vϵ−1)e−v(T−t) , for v ̸= 0

1
T−t+ϵ , for v = 0

where v ≡ µ
1−γ . The fraction invested in stocks is surprisingly independent of time

1We may alter how we value terminal wealth by using a separate utility function from U(XT ).
2Throughout this paper, we will see that δ is the inverse of the risk aversion measure, and we

will eventually define this as risk tolerance of an agent.
3Bellman’s Principle of Optimality is the discrete time analogue of the Hamilton-Jacobi-Bellman

equation which we use for our continuous time setting.

5



and has thus acquired the name “Merton’s fraction.” The solution in the infinite time

horizon case is almost identical.

Merton also derives a solution using similar techniques for the Constant Absolute

Risk Aversion (CARA) utility but only in the infinite time horizon case with the

CARA utility defined as:

U(x) = −e−ηX/η,

where η > 0 is Pratt’s measure of absolute risk aversion. The resulting solution is

π∗ =
a− r

ηrσ2X(t)
and c∗(t) = r +

ρ− r + (a− r)2/2σ2

X(t)ηr
.

Since Merton’s paper has been published, this investment problem has become a

fundamental, widely studied problem in portfolio theory. As we discussed, Merton

assumes investment in a singular stock and a singular bond which we may expand to

multiple stocks. Note also that Merton employs several simplifying assumptions, such

as constant interest rate as well as constant parameters in the stock price process (i.e.

constant µ and constant σ). While the topic of expanding these parameters has been

addressed in papers beyond Merton, we will see that these assumptions are useful in

the tractability of our problem, thus we only consider literature which employs these

simplifications.4 Nevertheless, in Merton’s model, it is clear that a singular agent

investing in the market is not a realistic model and thus we extend this to n players.

2.2 Competitive N-Agent Models

As mentioned before, analysis is typically extended to the n-player setting to obtain

a more realistic model of the market and hence this model is more complex. With n

players, we may study how these players interact, or how the actions of other players

4Aside from the graphon game where literature is not available for constant drift and volatility.
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affect a particular player. Here, we seek to find the Nash Equilibrium of players –

where no one player would be better off should they unilaterally deviate strategies.

In particular, consider n investors each seeking to achieve the same goal as pre-

viously stated. That is, they hope to maximize their expected utility while consum-

ing their wealth at intermediate periods. Without interaction between agents, this

problem boils down to the single investor problem, thus hasn’t been widely studied.

Rather, the extension of Merton’s problem to n-players with a specific interaction was

first introduced by Espinosa in 2010 in his PhD thesis, but more formally presented

in his paper “Optimal Investment Under Relative Performance Concerns” [1] which

was first published in 2011. As in Merton’s problem, he considers the market to

contain one riskless bond but now d risky assets. Here, he introduces a setting where

the agents interact by competing, where each agent seeks to relatively outperform his

competitors.

Using Espinosa’s model for the CARA utility case, we consider the arithmetic

mean as the metric agents compete against. Excluding agent i, this average may be

written as Y i
t := 1

n

∑
k ̸=iX

k
t .

5 Then, we consider the following objective, with A being

the set of admissible portfolios, which we will define later for our purposes, and θi

being agent i’s competition weight on the average of other agents’ wealths:

sup
πi∈A

E
[
Ui
(
(1− θi)X i

T + θi(X
i
T − Y i

T )
)]

= sup
πi∈A

E
[
Ui
(
X i
T − θiY i

T

)]
= sup

πi∈A
E
[
− exp

(
− 1

δi

((
1− θi

n

)
X i
T − θiY i

T

))]
. (2.3)

Clearly, the first supremum above shows how each agent takes into account a convex

combination of their absolute wealth as well as their relative wealth (i.e. how much

5Note that we will use k ̸= i throughout this paper to denote all agents k from 1 through n
excluding agent i.
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more wealth they have than the average). Moreover, we write Ui as a general utility

function for each agent i, but Espinosa specifically considers CARA utility parame-

terized by δi, the ith agent’s risk tolerance: Ui(x; δi) = −e−
1
δi
x
. Thus the last step

reflects this choice of utility function.

Espinosa proceeds to provide optimal solutions under various portfolio constraints

by using equilibrium pricing; however, these techniques lead to n-dimensional BSDE

(Backward Stochastic Differential Equation) systems and thus are hard to solve as

noted in [5]. Because this paper finds difficulty with the well-posedness of the prob-

lems and solutions, Espinosa mainly proves the existence of the Nash Equilibrium

and thus we look to [5] which solves this competitive n-agent model using stochastic

optimal control techniques as was done in Merton’s paper.

In [5], Daniel Lacker and Thaleia Zariphopoulou explicitly solve out the Nash

Equilibrium for the CARA utility case, using the objective introduced by Espinosa

in Equation (2.3). They make a key assumption for tractability that investment

strategies are chosen at time 0, and are thus constants (i.e. πt = π). Moreover, they

assume that the market consists now of n stocks, where Si for stock i ∈ [n] is agent

i’s individual stock.6 The market also consists of a common riskless bond (with 0

interest rate). Thus we have the stock price is:

dSit = µiS
i
tdt+ νiS

i
tdW

i
t + σiS

i
tdBt (2.4)

Here, µi > 0, νi, σi ≥ 0 are all constants with µi is the drift rate, νi is the volatility of

the prices for stock i (idiosyncratic volatility), and σi is the common noise that affects

all stocks equally (systematic volatility). They also enforce that νi + σi > 0. W i is a

standard Brownian motion on the filtered probability space (Ω,F ,F = (Ft)t∈[0,T ],P).

We will use the same probability space for subsequent sections.

6Note that we will use the notation [n] to denote the set {1, . . . , n} for the remainder of the
paper.
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Enforcing some measurability conditions for the π proportion the agent invests

and taking A to be the set of admissible portfolios, Lacker and Zariphopoulou then

write the ith agent’s wealth process as, using the same process as we introduced in

Merton:

dX i
t = X i

tπ
i
t(µidt+ νidW

i
t + σidBt) (2.5)

with initial condition X i
0 = xi0.

7 The solution to this problem with objective in Equa-

tion (2.3), where other players have fixed strategies, is derived through the Hamilton-

Jacobi-Bellman (HJB) equation in [5], and is as follows, for constants defined by

φn :=
1

n

n∑
k=1

δk
µkσk

σ2
k + ν2k(1− θk/n)

and ψn :=
1

n

n∑
k=1

θk
σ2
k

σ2
k + ν2k(1− θk/n)

.

If ψn < 1, the Nash equilibrium is given by:

πi,∗ = δi
µi

σ2
i + ν2i (1− θi/n)

+ θi
σi

σ2
i + ν2i (1− θi/n)

φn
1− ψn

, (2.6)

else if ψn = 1, there does not exist an equilibrium.

They also introduce, for the first time, modeling this problem under CRRA utility.

Here, each agent compares themselves with the geometric mean of agents8 defined by

Yt =
(∏

k ̸=iX
k
t

) 1
n
. Again, we consider our utility function parameterized by δi:

Ui(x; δi) =


1

1−δix
1−1/δi , if δi ̸= 1

log(x), if δi = 1.

(2.7)

Then, we have the following objective, withXT being the geometric mean of all agents

7This is true since dXi
t =

Xi
tπ

i
t

Si
t
dSi

t then we substitute Equation (2.4) for the stock price process.
8This is due to the difference in the form of the utility and leads to tractability of the problem.

The interested reader may read [5] for more discussion on this topic.
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(including i) at terminal time T :

sup
πi∈A

E
[
Ui

(
X i
TX

−θi
T

)]
= sup

πi∈A
E
[
Ui

(
X i1−θi/n

T Y iθi
T

)]
.

The authors prove that the constant Nash equilibrium always exists, and thus for

constants

φn :=
1

n

n∑
k=1

δk
µkσk

σ2
k + ν2k(1 + (δk − 1)θk/n)

,

ψn :=
1

n

n∑
k=1

θk(δk − 1)
σ2
k

σ2
k + ν2k(1 + (δk − 1)θk/n)

the constant equilibrium is given by:

πi,∗ = δi
µi

σ2
i + ν2i (1 + (δi − 1)θi/n)

− θi(δi − 1)
σi

σ2
i + ν2i (1 + (δi − 1)θi/n)

φn
1− ψn

(2.8)

In 2019, Daniel Lacker and Agathe Soret introduced consumption into this com-

petitive n-agent problem, noting that it was the first paper to do so [3]. However,

they only introduce consumption per unit wealth cit for the CRRA utility problem

and not for CARA utility. Under consumption, the new wealth process for agent i is

similar to Equation (2.5) with the intermediate consumption term:

dX i
t = X i

tπ
i
t(µidt+ νidW

i
t + σidBt)− citX i

t (2.9)

and thus the optimization objective for agent i is given by, where U is the CRRA

utility function defined in Equation (2.7),

sup
(πi,ci)∈A×C

E
[∫ T

0

U
(
(citX

i
t)

1−θi/n(c−i(t)Yt)
−θi ; δi

)
+ ϵiU

(
(X i

T )
1−θi/nY −θi

T ; δi
)]
.

(2.10)

Here, c−i(t) = (
∏

k ̸=i ck(t))
1
n . We may see that the optimization problem now includes

10



an integral since we care about intermediate consumption in addition to the final

wealth. Furthermore, we use ϵi > 0 to scale the terminal wealth in accordance with

the importance the agent places on intermediate consumption compared to terminal

wealth. The solution to this πi,∗ is the same as in the non-consumption case given by

Equation (2.8). For the optimal consumption, they write:

ci,∗t =


(

1
βi
+
(

1
λi
− 1

βi

)
e−βi(T−t)

)−1

if βi ̸= 0

(T − t+ λ−1
i )−1 if βi = 0

(2.11)

where βi and λi are constants defined in [3]. While we can find solutions in the CRRA

case, these n-player problems are limited in tractability. As noted in [3], the CARA

utility function with consumption only potentially has a solution. Thus, finding a

solution using a different model could be beneficial, as a more tractable framework

extends itself to more complex models. Thus we look at Mean Field Games (MFGs)

to solve this problem.

2.3 Mean Field Games for Competitive Agents

The first application of MFG theory to portfolio optimization is in [5] by Lacker and

Zariphopoulou looking at both CRRA and CARA utility functions. Moreover, the

introduction of consumption into the MFG for CRRA utility is done in [3]. The MFG

is a framework where, rather than n agents, we assess the continuum of agents (i.e. as

n→∞). This analysis is useful to analyze a large population of players as analyzing

the n-player game directly can become intractable due to the combinatorial explosion

of possible states and strategies. This framework allows the model to become more

tractable by understanding the distribution of states or strategies in the population

rather than tracking every individual interaction.

We look at Lacker and Soret’s analysis of the MFG in [3] with consumption for the

11



CRRA utility case as that is the most general. To analyze the MFG, we first consider

the n-player game where each player i ∈ [n] has type vector ζi := (ξi, δi, θi, µi, νi, σi).

Here, the agent’s type vector is their specified initial wealth (ξ), individual preference

parameters (δ, θ), and market parameters (µ, ν, σ). The equilibrium strategies (for

investment and consumption) in the n-player game, as in Equations (2.8) and (2.11),

only depend on this type vector as well as the type distribution of these type vectors,

written as mn = 1
n

∑n
k=1 δζk . Thus as n → ∞, by Law of Large Numbers, the

type distribution converges weakly to m, a limiting probability measure and thus the

equilibrium strategy converges as well. Rather than doing this analysis in context of

the n-player game, we represent the MFG as its own game for a continuum of agents

with type distribution m.9

Thus, to analyze the MFG, the authors pick a representative agent at random from

the continuum of agents and assign them a random type vector ζ := (ξ, δ, θ, µ, ν, σ)

then solve. They solve by first considering

X t := expE[logXt|FBt ] and Γt := expE[log ct|FBt ],

the continuous analog of geometric mean.10 The objective is

sup
(π,c)∈AMF

E
[∫ T

0

U (ct − θct; δ) dt+ ϵU (XT − θYT ; δ)
]
. (2.12)

Using the HJB equation to solve, the optimal solution (π∗, c∗) is (the unique strong

9This explanation is adapted from [3] and [5]. For more careful analysis, we defer the reader to
either of these papers.

10Here, we also condition on the filtration generated by the common noise for consistency. That
is, we want expE[logXt|FB

t ] = X.
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equilibrium):

π∗ =
δµ

σ2 + ν2
− θ(δ − 1)σ

σ2 + ν2
ϕ

1 + ψ

c∗t =


(

1
β
+
(

1
λ
− 1

β

)
e−β(T−t)

)−1

, if β ̸= 0

(T − t+ λ−1)−1, if β = 0

which is exactly the same as what was derived in the n player game rather with the

limit of the original constants.

In this model, we may see that these competition weights θi are quite restrictive,

since agent i may only weigh the average of the other agents. It does not take into

account whether agent i cares more about agent j as opposed to agent k (j, k ̸= i ∈

[n]). Thus, we keep this θi to measure how much the agent i cares about their relative

wealth compared to their absolute wealth and introduce a new parameter. The rest

of this paper focuses on this model with this new parameter both in the setting of

n players as well as in the setting of a continuum of players should that make the

problem more tractable.

2.4 Graphon Games for Competitive Agents

Since these weights are individual, the MFG approach cannot be extended to this

model as it can only be used for homogeneous agents (up to their type vector). This

weight, in fact, breaks the symmetry required for the MFG and thus we look at

graphon games to analyze this more heterogeneous problem.

The introduction of the weight λik for which player i weighs player k with was done

both in the n-player game and in the limit in [9] by Ludovic Tangpi and Xuchen Zhou.

Here, Tangpi and Zhou consider a slightly different model than the ones described
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above where the stock evolution for each player u ∈ I where I = [0, 1] is as follows:

dSut = diag(Sut )(µ
u
t dt+ σut dW

u
t + σ∗u

t dW
∗
t )

where we now have a continuum of stocks indexed by u. Here, we consider a riskless

bond with zero interest rate as we did before, but now the drift term and volatility

terms are not constants rather they are dependent on time. Moreover, as opposed to

Lacker and Zariphopoulou’s model, each agent in the continuum of agents invest in

all stocks as opposed to being restricted to their own individual stock. Thus agent

u’s wealth process with strategy πu follows the dynamics below, where we assume the

agent does not consume wealth at intermediate periods:

dXu
t = πut · (Σu

t θ
u
t dt+ σut dW

u
t + σ∗u

t dW
∗
t ), Xu

0 = ξu

where Σu
t = (σut , σ

∗u
t ) and θut = Σu

t
⊤ (Σu

tΣ
u
t
⊤)−1

µut . Tangpi and Zhou then fix graphon

G : I×I → I which is a symmetric and measurable function. The utility maximization

problem for agent u is the following under CARA utility:

V u,G
0 = V u,G

0 ((πv)v ̸=u) (2.13)

:= sup
πu∈AG

E
[
− exp

(
− 1

ηu

(
Xu,πu

T − E
[
ρ

∫
I

Xv,πv

T G(u, v)dv|F∗
T

]))]
(2.14)

where F∗ := (F∗
t )t∈[0,T ] is the P-completion of the filtration generated by W ∗. Here,

since the agent uses the CARA utility function, the model subtracts the arithmetic

average of other agents’ wealth from the agent’s wealth. The main result of this

paper is firstly that the graphon game exists and secondly that the n player game

with discrete weights converges to the graphon game with a continuum of weights.

Tangpi and Zhou prove these results extensively both in the common noise case and

without. In our paper, we consider a similar problem but with the CRRA utility
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under constant drift and volatility terms as well as only investment in individualized

stocks. However, we approach the graphon game without using the BSDE methods

introduced in this paper, rather we use aforementioned HJB equations.
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Chapter 3

Weighted N Player Game Model

In this section, we introduce a model, similar to that introduced in [3] for CRRA

utility, but where we introduce a new parameter to weigh each individual competitor.

This new problem can be formulated as a question: in a game of n agents, how do

we maximize the expected terminal utility of each agent who have an individualized

competition weight with respect to each competitor, as well as a relative performance

weight to determine how much they care about competition? We proceed to solve this

new problem by deriving the Hamilton-Jacobi-Bellman equation, guessing a suitable

ansatz, then obtaining a closed form solution for the optimal control. To extend this

best response solution to the Nash Equilibrium, we prove that there exists a unique

fixed point of the best response using the Banach Fixed Point Theorem.

3.1 Introduction

To start, we formulate the optimization objective for the CRRA utility function in

the n-player game with individual weights. This model looks similar to (2.10) that

we introduced in the n-player competitive agent model.

Throughout the remainder of this paper, we will work on the probability space

(Ω,F ,F,P) where the filtration F = (F)t∈[0,t] is the natural filtration generated by
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the Brownian motion of each stock as well as the common noise. Again, we have that

each agent’s wealth evolves as in (2.5), assuming a zero interest rate, with each agent

trading their individual stock i at each time step t over a common finite investment

horizon [0, T ]:

dX i
t = X i

tπ
i
t(µidt+ νidW

i
t + σidBt)

with initial condition xi0 ∈ R. Each individual stock i here has drift rate µi > 0,

volatility νi ≥ 0, and common noise coefficient σi ≥ 0 where σi + νi > 0. Note that

the Brownian motions B1, . . . , Bn,W are independent. Each agent uses the CRRA

utility function as below, with personal risk tolerance parameter δi > 0:

Ui(x; δi) =


(
1− 1

δi

)
x
1− 1

δi , if δi ̸= 1

log(x), if δi = 1.

Specifically, each agent i seeks to maximize their expected utility under this CRRA

utility. They do so by picking the optimal control πit at each time step t ∈ [0, T ]

where this represents the fraction of wealth invested in stocks. πit is an admissible

strategy if it satisfies the following definition.

Definition 3.1.1 (Admissible Strategy). A portfolio strategy π is admissible if it is

an R valued, F progressively measurable process satisfying the integrability condition

E[
∫ T
0
|πt|2dt] <∞.

Thus, if each agent i picks admissible strategy πi for all i ∈ [n], agent i’s expected

payoff Ji is the following:

Ji(π
1, . . . , πn) := E

[
U
(
X i
T

(
Y i
T

)−θi , δi)] ,where Y i
T =

(
n∏
k=1

(Xk
t )
λ̃ik

) 1∑n
k=1

λ̃ik

. (3.1)

Expected utility here is a function of the competition parameter which captures the

tradeoff between absolute and relative wealth: with θi close to 0, agent i gains utility
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from a higher absolute terminal wealth whereas θi close to 1 signifies that agent i

gains utility from outperforming their competition, the weighted geometric mean of

other agents’ terminal wealth.

Again, we see the similarities to Lacker and Soret’s model introduced in [3], the

only difference being the added parameter weighing each individual agent λ̃ik. That

is, λ̃ik ∈ [0, 1] is the weight that agent i gives each other agent k when competing with

them. We make the modeling decision to write Y i
T as the above with λ̃ik in exponent

since this is equivalent to

log Y i
T =

1

n

n∑
k=1

λ̃ik log(X
k
T ),

which is the weighted arithmetic average.

λ̃ik is similar to θi which weighs the whole population but rather is individualized:

if λ̃ik is 1, then agent i cares about agent k’s wealth whereas if λ̃ik is 0, then agent i is

indifferent to agent k’s wealth. We take λ̃ii = 0 as we don’t want agent i to consider

itself in its competition. We define these weights more formally as an indicator below:

λ̃ij =


1, if agent i cares about agent j’s performance

0, otherwise.

Thus, the weight parameter and the competition parameter θi work in conjunction:

while the weight of each agent that agent i cares about is 1, we know that these

weights can be magnified by θi close to 1 or diminished by θi being close to 0. Now,

we may write as before

Y i
t =

(∏
k ̸=i

(Xk
t )
λ̃ik

) 1∑n
k=1

λ̃ik

=
∏
k ̸=i

(Xk
t )
λik
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where λik =
λ̃ik∑n

k=1 λik
.1

Given this model, we seek to find a Nash equilibrium of the n players defined in

[5] as the following:

Definition 3.1.2 (N-Player Nash Equilibrium). A vector (π1,∗, . . . , πn,∗) of admis-

sible strategies is a Nash Equilibrium if, for every player i = 1, . . . , n, the following

inequality holds true for all admissible strategies πi ∈ A:

Ji(π
1,∗, . . . , πi,∗, . . . , πn,∗) ≥ Ji(π

1,∗, . . . , πi−1,∗, πi, πi+1,∗, . . . , πn,∗). (3.2)

In addition to the above condition, if, for all players i, their corresponding strategy

πi,∗ remain constant over the finite horizon [0, T ] (formally, πi,∗t = πi,∗0 ∀t ∈ [0, T ]),

this is a constant Nash Equilibrium.

We prove the existence of a Nash Equilibrium by fixing other players strategies

to be (π1, . . . , πi−1, πi+1, . . . , πn) then computing the best response of player i and

finding a fixed point. This is done by maximizing the payoff of player i in (3.1) over

πi, where we consider the set of admissible strategies A:

sup
πi∈A

E
[
U
(
X i1−θi/n

T YT
i−θi ; δi

)]
. (3.3)

To solve this optimization problem, we must derive the Hamilton-Jacobi-Bellman

(HJB) equation and find the solution.

3.2 HJB Equation

Each agent must now solve the same optimization problem as in (2.10). To solve, we

will need to derive the HJB equation. While typically, a problem with n agents lends

itself to an n-dimensional HJB equation, we rather treat the geometric mean Yt as an

1Each λik is thus fractional and retains the property of λii = 0.
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uncontrolled state variable. This allows us to derive a single HJB equation. Before

deriving the HJB equation, we first proceed in a similar manner as the competitive

n-player game, deriving the dynamic of this new state variable Yt.

3.2.1 Derivation of Geometric Mean Process

We start off by fixing agent i as well as constant (time-independent) investment

strategies for agents k ̸= i (i.e. we may write πkt = πk). Thus, each Xk
t solves (2.10)

with initial solution Xk
0 = xk0, that is:

dXk
t = Xk

t π
k(µkdt+ νkdW

k
t + σkdBt). (3.4)

The application of Itô’s formula allows us to write:

d(logXk
t ) =

(
µkπ

k − 1

2
(σ2

k + ν2k)π
k2
)
dt+ νkπ

kdW k
t + σkπ

kdBt. (3.5)

We may see that d(log Y i
t ) =

1
n

∑
k ̸=i λikd(logX

k
t ) and thus, using the above (3.5),

d(log Y i
t ) =

(
λ̂iµπ−i −

1

2
λ̂iΣπ2

−i

)
dt+

1

n

∑
k ̸=i

λikνkπ
kdW k

t + λ̂iσπ−idBt

where λ̂iµπ−i =
1
n

∑
k ̸=i λikµkπ

k, Σk = σ2
k + ν2k and thus λ̂iΣπ2

−i =
1
n

∑
k ̸=i λikΣkπ

k2.

Moreover, we have that λ̂iσπ−i = 1
n

∑
k ̸=i λikσkπ

k and λ̂iνπ−i = 1
n

∑
k ̸=i λikνkπ

k.

Using Itô’s formula again to find d(Y i
t ), we find that:

dY i
t = Y i

t (ηi)dt+ Y i
t λ̂iνπ−idW

k
t + Y i

t λ̂iσπ−idBt (3.6)

where ηi = λ̂iµπ−i − 1
2

(
λ̂iΣπ2

−i − λ̂iσπ
2

−i − 1
n
̂(λiνπ)2−i

)
defined in terms of λ̂iµπ−i,

λ̂iΣπ2
−i and λ̂iσπ−i which we defined previously, and ̂(λiνπ)2−i =

1
n

∑
k ̸=i λ

2
ikν

2
kπ

k2.
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3.2.2 Derivation of Coupled HJB Equation

To find the best response of player i, we derive the HJB equation, with Y i
t being the

solution to Equation (3.6) and X i
t being the solution to Equation (3.4). However for

simplicity, we write the SDEs as, where they are valued in Rn:

dX i
t = b

(x)
i (t,X i

t)dt+ ν
(x)
i (t,X i

t)dW
i
t + σ

(x)
i (t,X i

t)dBt

dY i
t = b

(y)
i (t, Y i

t )dt+ ν
(y)
i (t, Y i

t )dW
i
t + σ

(y)
i (t, Y i

t )dBt

with initial conditions X i
0 = xi0 and Y i

0 = yi0. We couple these as one process Zi =

(X i, Y i). We use notation Zi,t,x,y for the process Zi with initial condition (t, x, y) ∈

[0, T ]× Rn × Rn.

Theorem 3.2.1 (HJB Equation). The coupled HJB equation for the above problem

is the following for constant control ai ∈ R and value function φi:

φit + sup
ai∈R

[
φixb

(x)
i + φiyb

(y)
i + φixy(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i ) +

1

2
φixx(ν

(x)2

i + σ
(x)2

i )

+
1

2
φiyy(ν

(y)2

i + σ
(y)2

i )

]
= 0.

To derive this, as in [8], we first state the Dynamic Programming Principle (DPP).

Theorem 3.2.2 (Dynamic Programming Principle). For any F measurable stopping

time θ ∈ Tt,T , where Tt,T is the set of [t, T ] valued stopping times:

φi(t, x, y) = sup
αi∈A

E
[
φi(θ, Zi,t,x,y

θ )
]

for control αi = (αis)s∈[0,T ], a progressively measurable processes valued in A ⊆ Rn

and (t, x, y) ∈ [0, T ] × Rn × Rn. Moreover, fi is a measurable function such that

fi : [0, T ] × Rn × A × C → R for each i ∈ [n]. Finally, we define φi to be the value

function such that φi(x) = supαi∈A Ji(π
1, π2, . . . , πi−1, αi, πi+1, . . . , πn) where Ji is the
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expected payoff as in (3.1).

Prooof of Theorem 3.2.1. Consider the stopping time θ = t + h where h is a small

value, and t is some time. Moreover, we fix constant controls αis = ai for some

arbitrary ai ∈ R. By the DPP in Theorem 3.2.2, we know that:

φi(t, x, y) ≥ E
[
φi(t+ h, Zi,t,x,y

t+h )
]
. (3.7)

We start by looking at the right hand side, specifically φi(t + h, Zi,t,x,y
t+h ) where we

assume φi ∈ C1,2 in the interval [t, t+ h].2 We may then apply Itô’s Formula:

φi(t+ h, Zi,t,x,y
t+h ) = φi(t, x, y) +

∫ t+h

t

∂φi

∂t
ds+

∫ t+h

t

(
∂φi

∂x
b
(x)
i +

∂φi

∂y
b
(y)
i

)
ds

+

∫ t+h

t

∂2φi

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )ds+

∫ t+h

t

1

2

∂2φi

∂x2
(ν

(x)2

i + σ
(x)2

i )ds

+

∫ t+h

t

1

2

∂2φi

∂y2
(ν

(y)2

i + σ
(y)2

i )ds+

∫ t+h

t

(
∂φi

∂x
ν
(x)
i +

∂φi

∂y
ν
(y)
i

)
dW i

s

+

∫ t+h

t

(
∂φi

∂x
σ
(x)
i +

∂φi

∂y
σi(y)

)
dBs.

Taking the expectation of this, we know that the Brownian motions W i
s and Bs

are independent for all i by prior assumption and thus E[dW i
sdBs] = E[dW i

s ]E[dBs].

Moreover, we know that the stochastic integrals (i.e. integrals with respect to dW i
s

or dBs) have 0 expectation since they are martingales vanishing in 0.3 We obtain:

E[φi(t+ h, Zi,t,x,y
t+h )] = φi(t, x, y) + E

[∫ t+h

t

∂φi

∂t
ds+

∫ t+h

t

(
∂φi

∂x
b
(x)
i +

∂φi

∂y
b
(y)
i

)
ds

+

∫ t+h

t

∂2φi

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )ds+

∫ t+h

t

1

2

∂2φi

∂x2
(ν

(x)2

i + σ
(x)2

i )ds

+

∫ t+h

t

1

2

∂2φi

∂y2
(ν

(y)2

i + σ
(y)2

i )ds

]
.

2To the unfamiliar reader, this denotes the set of continuous functions differentiable in time t
and twice differentiable in x as well as y.

3Typically, such stochastic integrals would only result in a local martingale. However, since we
impose appropriate integrability conditions on the integrand, we recover a true martingale.
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By Equation (3.7), since φi(t, x, y) ≥ E
[
φi(t+ h, Zi,t,x,y

t+h )
]
, we may substitute the

above expression into this equation:

φi(t, x, y) + E

[∫ t+h

t

∂φi

∂t
ds+

∫ t+h

t

(
∂φi

∂x
b
(x)
i +

∂φi

∂y
b
(y)
i

)
ds

+

∫ t+h

t

∂2φi

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )ds+

∫ t+h

t

1

2

∂2φi

∂x2
(ν

(x)2

i + σ
(x)2

i )ds

+

∫ t+h

t

1

2

∂2φi

∂y2
(ν

(y)2

i + σ
(y)2

i )ds

]
≤ φi(t, x, y).

Clearly, this is exactly

E

[∫ t+h

t

∂φi

∂t
ds+

∫ t+h

t

(
∂φi

∂x
b
(x)
i +

∂φi

∂y
b
(y)
i

)
ds+

∫ t+h

t

∂2φi

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )ds

+

∫ t+h

t

1

2

∂2φi

∂x2
(ν

(x)2

i + σ
(x)2

i )ds+

∫ t+h

t

1

2

∂2φi

∂y2
(ν

(y)2

i + σ
(y)2

i )ds

]
≤ 0.

Now we multiply by 1
h
and take the limit as h → 0. We also rewrite φi as φi(s, Zi

s)

to represent that it is a function of s and Zi
s,

lim
h→0

1

h
E

[∫ t+h

t

(
∂φi(s, Zi

s)

∂t
+
∂φi(s, Zi

s)

∂x
b
(x)
i +

∂φi(s, Zi
s)

∂y
b
(y)
i +

∂2φi(s, Zi
s)

∂x∂y
(ν

(x)
i ν

(y)
i

+ σ
(x)
i σ

(y)
i ) +

1

2

∂2φi(s, Zi
s)

∂x2
(ν

(x)2

i + σ
(x)2

i ) +
1

2

∂2φi(s, Zi
s)

∂y2
(ν

(y)2

i + σ
(y)2

i )

)
ds

]
≤ 0.

Here, we may use the Fundamental Theorem of Calculus, since taking the limit as

h→ 0 is equivalent to taking the derivative, thus by evaluating at s = t, we obtain

E

[
∂φi(t, Zi

t)

∂t
+
∂φi(t, Zi

t)

∂x
b
(x)
i +

∂φi(t, Zi
t)

∂y
b
(y)
i +

∂2φi(t, Zi
t)

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )

+
1

2

∂2φi(t, Zi
t)

∂x2
(ν

(x)2

i + σ
(x)2

i ) +
1

2

∂2φi(t, Zi
t)

∂y2
(ν

(y)2

i + σ
(y)2

i )

]
≤ 0.

We know that Zi
t = (x, y) and so we may get rid of the expectation as well as simplify
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notation, where φit =
∂φi(t,Zi

t)

∂t
and other partial derivatives are notated similarly:

φit + φixb
(x) + φiyb

(y) + φixy(ν
(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i ) +

1

2
φixx(ν

(x)2

i + σ
(x)2

i )

+
1

2
φiyy(ν

(y)2

i + σ
(y)2

i ) ≤ 0.

This above inequality is true for all ai. Thus we may write that the inequality holds

for the suprema, where ai takes values in R:

φit + sup
ai∈R

[
φixb

(x)
i + φiyb

(y)
i + φixy(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i ) +

1

2
φixx(ν

(x)2

i + σ
(x)2

i )

+
1

2
φiyy(ν

(y)2

i + σ
(y)2

i )

]
≤ 0,

where φit is not in the supremum as it is a function of only t, x, y. For the other

inequality, we follow the same steps instead taking αi,∗ and ci,∗ to be the optimal

controls in the DPP. That is, φi(t, x) = E[φi(t + h, Zi,t,x,y,αi,∗,ci,∗

t+h )]. We apply Itô’s

formula to φi(t+h, Zi,t,x,y,αi,∗,ci,∗

t+h ) as we did before and follow the same steps applying

h leading to:

E
[
∂φi(t, Zi

t)

∂t
+
∂φi(t, Zi

t)

∂x
b
(x)
i +

∂φi(t, Zi
t)

∂y
b
(y)
i +

∂2φi(t, Zi
t)

∂x∂y
(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i )

+
1

2

∂2φi(t, Zi
t)

∂x2
(ν

(x)2

i + σ
(x)2

i ) +
1

2

∂2φi(t, Zi
t)

∂y2
(ν

(y)2

i + σ
(y)2

i )

]
= 0.

We take the supremum and realize that this is at least 0 by the above:

E
[
∂φi(t, Zi

t)

∂t
+ sup

ai∈R

(
∂φi(t, Zi

t)

∂x
b
(x)
i +

∂φi(t, Zi
t)

∂y
b
(y)
i +

∂2φi(t, Zi
t)

∂x∂y
(ν

(x)
i ν

(y)
i

+ σ
(x)
i σ

(y)
i ) +

1

2

∂2φi(t, Zi
t)

∂x2
(ν

(x)2

i + σ
(x)2

i ) +
1

2

∂2φi(t, Zi
t)

∂y2
(ν

(y)2

i + σ
(y)2

i )

)]
≥ 0.

We know once more that Zi
t = (x, y) and thus we may get rid of the expectation as
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well as simplify notation:

φit + sup
ai∈R

[
φixb

(x)
i + φiyb

(y)
i + φixy(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i ) +

1

2
φixx(ν

(x)2

i + σ
(x)2

i )

+
1

2
φiyy(ν

(y)2 + σ
(y)2

i )

]
≥ 0

We may combine this with the previous inequality to get the coupled HJB equation

with equality:

φit + sup
ai∈R

[
φixb

(x)
i + φiyb

(y)
i + φixy(ν

(x)
i ν

(y)
i + σ

(x)
i σ

(y)
i ) +

1

2
φixx(ν

(x)2

i + σ
(x)2

i )

+
1

2
φiyy(ν

(y)2

i + σ
(y)2

i )

]
= 0

3.3 Solution to Weighted N Player Game

3.3.1 Best Response Strategy

We first state the HJB equation derived in Theorem 3.2.1, plugging in the original

coefficients of the X Itô process and Y Itô process as in Equations (3.4) and (3.6)

where φi(x, y, t) is the solution:

φit + sup
πi∈R

[
φix(π

iµi)x+ φiy(ηi)y + φixy(π
ixνi · 0 + πixσiyλ̂iσπ−i) +

1

2
φixx((π

ixνi)
2

+ (πixσi)
2) +

1

2
φiyyy

2(
1

n
̂(λiνπ)2−i + λ̂iσπ

2

−i)

]
= 0
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with terminal condition φi(x, y, T ) = ϵiU(x
1−θi/ny−θi ; δi).

4 Rearranging and splitting

apart the suprema:

φit + sup
πi∈R

[
πi(φixµix+ φixyxyσiλ̂iσπ−i) +

1

2
φixxπ

i2x2Σi︸ ︷︷ ︸
Λ

]
+ φiyy(ηi)

+
1

2
φiyyy

2(
1

n
̂(λiνπ)2−i + λ̂iσπ

2

−i) = 0.

Now we may take the derivative of the first suprema to find the optimal π:

dΛ

dπi
= φixµix+ φixyxyσiλ̂iσπ−i + φixxπ

ix2Σi = 0.

This is solved by

πi,∗ =
−µixφix − σiλ̂iσπ−ixyφ

i
xy

Σix2φixx
. (3.8)

We may plug this back in and the equation becomes:

φit −
(µixφ

i
x + σiλ̂iσπ−ixyφ

i
xy)

2

2Σix2φixx
+ φyy(ηi) +

1

2
φiyyy

2(
1

n
̂(λiνπ)2−i + λ̂iσπ

2

−i) = 0.

(3.9)

For each of the two cases for the CRRA utility function, we make separate ansatzes

and solve.

δi ̸= 1: We make the following ansatz for the solution φi, for some function of t

denoted by fi(t). Since the terminal condition at time T must be the expression as

in Equation (3.3.1), we put fi(T ) = 1 as well:

φi(x, y, t) = ϵi

(
1− 1

δi

)−1

x(1−θi/n)(1−1/δi)y−θi(1−1/δi)fi(t). (3.10)

4This suprema is finite if the function is concave which is clearly true.
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We plug this back in and divide by ϵi

(
1− 1

δi

)−1

x(1−θi/n)(1−1/δi)y−θi(1−1/δi). Note that

we may do this since xφix, yφ
i
y, x

2φixx and y2φiyy all yield this expression with this

constant in front of it (as well as an fi(t) which we do not divide out as it does not

appear in φt). Thus we may rewrite the equation, replacing the constant expression

with ρi defined as:

ρi =

(
1− 1

δi

)((1− θi/n)
(
µi − σiθi(1− 1/δi)λ̂iσπ−i

)2
2Σi(1− (1− θi/n)(1− 1/δi))

+
1

2

(
(λ̂iσπ−i)

2

+ λ̂iνπ
2

−i

)
θ2i (1− 1/δi)− θiλ̂iµπ−i +

θi
2
λ̂iΣπ2

−i

)
.

With this, we have the following equation:

0 =

(
1− 1

δi

)−1

f ′
i(t) + ρifi(t). (3.11)

This differential equation is easily solved by fi(t) = e
ρi

(
1− 1

δi

)
(T−t)

. Plugging in and

using the verification theorem, we have that the optimal control or best response of

player i is:5

πi,∗ =
δiµi − σiλ̂iσπ−iθi(δi − 1)

(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

. (3.12)

δi = 1: With δi = 1, the utility can be written as:

U
(
(X i

t)
1−θi/n(Y i

t )
−θi/n; δi

)
= log

(
x1−θi/ny−θi/n

)
Now we make an ansatz with value function φi for some function of t denoted by

fi(t), where we put fi(T ) = 0 to fulfill the boundary condition:

φi(x, y, t) = U
(
x1−θi/ny−θi/n; δi

)
+ fi(t) =

(
1− θi

n

)
log x− θi log y + fi(t).

5This is a classical result in optimal control theory that guarantees that the function φ is the
optimal value function for the problem and π is an optimal control if φ satisfies the HJB equations
and meets the boundary conditions as well as if π optimizes the Hamiltonian.
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Plugging this into the HJB equation in Equation (3.9), we get

f ′
i(t) + ρi = 0

with

ρi :=
µ2
i (1− θi

n
)

2(σ2
i + ν2i )

− θiη +
1

2
θi

(
λ̂iσπ

2

−i +
1

n
̂(λiνπ)2−i

)
.

Then clearly fi(t) is

fi(t) = ρi(T − t)

and plugging φi back in, we get

πi,∗ =
µi
Σi

.

Again, we use the verification theorem to prove this is the optimal control and thus

player i’s best response.

3.3.2 Existence of Nash Equilibrium

To prove that the best response we found in Equation (3.12) is the Nash equilibrium

(π1,∗, . . . , πn,∗), we now show that a fixed point of this mapping exists and is unique.

We begin by stating the Banach Fixed Point Theorem, the main tool we will use to

prove this result.

Theorem 3.3.1 (Banach Fixed Point Theorem). Let Ψ : X → X be a function on

the complete metric space (X, d). If Ψ is a contraction mapping, that is, we have that

∀x, x′ ∈ X,

d(Ψ(x),Ψ(x′)) ≤ ϵd(x, x′)

for ϵ < 1, then Ψ admits a unique fixed point.

To use this theorem, we first define the complete metric space as (Rn, d) where

28



for x(1), x(2) ∈ Rn, the Euclidean distance d is written as

d(x(1), x(2)) =

√√√√ n∑
i=1

(
x
(2)
i − x

(1)
i

)2
.

Define the vector π = (π1, . . . , πn) ∈ Rn. Then the function Ψ : Rn → Rn is

the following: Ψ(π) = (Ψ(π)1, . . . ,Ψ(π)n) where each element is the best response

derived in Equation (3.12):

Ψ(π)i = πi =
δiµi − σi

n

∑n
j=1(λijσjπ

j)θi(δi − 1)

(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

.

Now, to show there exists a fixed point Ψ(π) = π, we prove that Ψ is a contraction

mapping then invoke the Banach Fixed Point Theorem.

Theorem 3.3.2. The function Ψ defined as above is a contraction mapping for suf-

ficiently large n.

Proof. We prove this by computing for any π,π ∈ Rn:

d(Ψ(π)−Ψ(π′))2 =
n∑
i=1

|πi − πi′|2.

Plugging in, we have:

=
n∑
i=1

∣∣∣∣∣ δiµi −
σi
n

∑n
j=1(λijσjπ

j)θi(δi − 1)

(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

−
δiµi − σi

n

∑n
j=1(λijσjπ

′j)θi(δi − 1)

(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

∣∣∣∣∣
2

.

We may rearrange terms, noting that the only term that differs is that with πj and

πj ′:

=
n∑
i=1

( σiθi(δi − 1)

n(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

)2
∣∣∣∣∣
n∑
j=1

λijσj(π
j ′ − πj)

∣∣∣∣∣
2
 .
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By Cauchy Schwarz, we can bound the second term of the product:

=
n∑
i=1

((
σiθi(δi − 1)

n(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

)2 n∑
j=1

λ2ijσ
2
j (π

j ′ − πj)2
)
.

Now note we have that λ2ijσ
2
j ≤ (maxj∈[n] σj)

2 since 0 ≤ λij ≤ 1. Denote C to be

(maxj∈[n] σj). Then we know that, since d(π,π′)2 =
∑n

j=1(π
j ′ − πj)2,

= d(π,π′)2
n∑
i=1

(
Cσiθi(δi − 1)

n(σ2
i + ν2i )(δi − (1− θi/n)(δi − 1))

)2

.

Clearly, we may bound the above as required if

ϵ =

√√√√√
(

1
n

∑n
i=1

(
Cσiθi(δi−1)

(σ2
i +ν

2
i )(δi−(1−θi/n)(δi−1))

)2)
n

,

where the numerator is an average over bounded parameters for each agent and the

denominator is
√
n. Thus as n grows, we see ϵ becomes small. For sufficiently large

n, ϵ < 1 and, hence, Ψ is a contraction mapping on Rn.

As a result of the above theorem, we may invoke Banach Fixed Point Theorem

and say that for enough players in the n-player game, Ψ admits a unique fixed point,

thereby proving the existence of such a Nash equilibrium.6

3.4 Discussion

In the logarithmic case, we see that the new investment strategy is exactly the same.

This is an artifact of the logarithmic utility function which causes agents with such

utility to not be competitive. In the general CRRA utility, the investment strategy

is similar to that proved in [3] for the unweighted case presented earlier in Equation

6Note that this equilibrium is a constant Nash equilibrium since π is time independent.
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(2.11) with the exception of the definitions of our constants. This is expected as

the only change in our formulation is the inclusion of individualized weights which

doesn’t change the problem significantly and thus the optimal strategy would be

similar in competing with weighted averages rather than the original averages. We

discuss more about the properties of the optimal investment strategy in Section 5.3

since the n-player solution has similar structure to the graphon solution.
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Chapter 4

Graphon Games

Now consider taking the number of players n to the infinite limit. We use a graphon

game to represent this network of interactions. To do so, we first build out relevant

theory for graphon games then proceed to find the Nash equilibrium under CRRA

utility.

4.1 Background

We build out this theory, taking concepts from [9]. Rather than indexing as we did

before, where we studied agent i ∈ {1, 2, . . . , n}, we now represent this as a continuum

with agent u ∈ [0, 1]. Hence, each strategy, rather than being represented as πi, is

represented as πu. Moreover, for the market model, we have now a continuum of

stocks for each agent and therefore a continuum of Brownian motions (W u)u∈[0,1]. We

also have B that we had established previously as the Brownian motion for common

noise. Thus, we write the following for each stock:

dSu

Su
= µudt+ νudW

u
t + σudBt
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with constants µu, νu, and σu defined previously as drift rate and volatilities respec-

tively for stock u. Player u’s wealth is:

dXu
t = πuXu

t (µudt+ νudW
u
t + σudBt)

similar to what we defined before. Here, the difference lies in the total utility. Orig-

inally, the CRRA utility, without consumption, was defined as in Equation (3.3),

rather now we define it as follows:

sup
πu∈A

E
[
U
(
Xx,π
T Y x,π

T
−θu
)]

(4.1)

where

Y u
t = exp

(
E
[∫ 1

0

G(u, v) log(Xv
t )dv|FBt

])
is the weighted geometric mean of the continuum of agents. Moreover, G(u, v) is the

continuous analogue to λuv or the weight player u places on player v. More generally,

G is a graphon or a bounded, measurable, and symmetric function G : [0, 1]2 → [0, 1]

which measures the interaction among a continuum of agents. Now we proceed to

define a graphon Nash equilibria.

Definition 4.1.1 (Graphon Nash Equilibria). A family of strategy profiles (π̂u)u∈I

such that for u ∈ [0, 1]:

E
[
U

(
Xx,π̂u

T

(
Y x,π̂v

T

)−θu)]
= max

πu∈A
E
[
U

(
Xx,πu

T

(
Y x,π̂v

T

)−θu)]
.

This definition essentially means that should we fix a strategy profile for all players

v ̸= u, then the strategy player u picks is the one that maximizes their expected utility.

In other words, there is no incentive for any player u to deviate from πu as it yields

the maximum expected reward. Now that we have defined all relevant definitions, we

proceed to solve for the graphon Nash equilibrium.
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4.2 Solution

4.2.1 Derivation of Ansatz

To approach this problem, we first derive the Itô process for Y u
t . We know that Y u

t

is defined as the following:

Y u
t = exp

(
E
[∫ 1

0

G(u, v) log(Xv
t )dv

∣∣∣∣FBt ]).
Thus we begin with the Itô process for Xv

t :

dXv
t = πvXv

t (µvdt+ νvdW
v
t + σvdBt).

Using Itô’s formula, we see that:

d log(Xv
t ) =

1

Xv
t

dXv
t −

1

2
πv

2

(ν2v + σ2
v)dt.

Computing
∫ 1

0
G(u, v)d log(Xv

t )dv, we have

∫ 1

0

G(u, v)d log(Xv
t )dv =

∫ 1

0

G(u, v)

(
1

Xv
t

dXv
t −

1

2
πv

2

(ν2v + σ2
v)dt

)
dv.

Expanding this, we get:

∫ 1

0

G(u, v)d log(Xv
t )dv =

∫ 1

0

G(u, v)

(
πvµv −

1

2
πv

2

(ν2v + σ2
v)

)
dtdv

+

∫ 1

0

G(u, v)πvνvdW
v
t dv +

∫ 1

0

G(u, v)πvσvdBtdv.
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Now taking the expectation conditioned on the filtration generated by B and finding

d log Y u
t = E

[∫ 1

0
G(u, v)d log(Xv

t )dv|FBt
]
, we have

d log Y u
t = E

[ ∫ 1

0

G(u, v)

(
πvµv −

1

2
πv

2

(ν2v + σ2
v)

)
dtdv +

∫ 1

0

G(u, v)πvνvdW
v
t dv

+

∫ 1

0

G(u, v)πvσvdBtdv

∣∣∣∣FBt ].
Here, the dependence on FBt arises from the investment strategy πv. All other terms

with individual parameters and W v
t are independent of this filtration. Thus, the

conditional expectation of the dW v
t term is just the regular expectation which is 0

since the stochastic integral is a martingale vanishing in 0. Thus we have:

d log Y u
t = E

[ ∫ 1

0

G(u, v)

(
πvµv −

1

2
πv

2

(ν2v + σ2
v)

)
dv

∣∣∣∣FBt ]dt
+ E

[ ∫ 1

0

G(u, v)πvσvdv

∣∣∣∣FBt ]dBt.

Taking πµu :=
∫ 1

0
G(u, v)µvE[πv|FBt ]dv, πσu :=

∫ 1

0
G(u, v)σvE[πv|FBt ]dv,

π2ν2u =
∫ 1

0
G(u, v)ν2vE[πv

2|FBt ]dv, and π2σ2
u =

∫ 1

0
G(u, v)σ2

vE[πv
2|FBt ], we may rewrite

this as:

d log Y u
t = (πµu −

1

2
(π2ν2u + π2σ2

u))dt+ πσudBt.

Using Itô’s formula again to transform this process to the desired dynamics with the

exponential function, we get the following:

dY u
t = Y u

t (γudt+ πσudBt),

where γu = πµu − 1
2
(π2ν2u + π2σ2

u). Now we treat (Xu
t , Y

u
t ) as a state process and

use the coupled HJB equations derived in Theorem 3.2.1. While the value function

is φu(t, x, y) for each player u, we drop this superscript and (t, x, y) for notational
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simplicity and we also use the notation φt =
∂φu

∂t
for all partial derivatives:

0 = φt + sup
πu∈R

[
φxπ

uxµu + φyy(πµu −
1

2
(π2ν2u + π2σ2

u) +
1

2
πσ2

u)

+ xyπuφxy(σuπσu) + x2φxxπ
u2 1

2

(
ν2u + σ2

u

)
+ y2φyy

1

2

(
πσ2

u

) ]
.

In turn, we may make the following ansatz for the solution φu, for some function of

t denoted by fu(t). Since the terminal condition at time T must be φu(x, y, T ) =

Uu
(
(xy)−θu ; δu

)
, we put fu(T ) = 1 as well:

φu(x, y, t) =

(
1− 1

δu

)−1

x(1−1/δu)y−θu(1−1/δu)fu(t). (4.2)

We plug this ansatz in (dropping the superscript u for notational simplicity) and

divide by
(
1− 1

δu

)−1

x(1−1/δu)y−θu(1−1/δu) to get the following:

0 = f ′
u(t) + fu(t)

(
sup
πu∈R

[
πu(1− 1

δu
)(µu − θu(1−

1

δu
)(σuπσu))

− 1

2δu
(1− 1

δu
)πu

2 (
ν2u + σ2

u

)
− θu(1−

1

δu
)(πµu −

1

2
(π2ν2u + π2σ2

u)

+
1

2
πσ2

u)−
1

2
θu(1−

1

δu
)(−θu +

θu
δu
− 1)

(
πσ2

u

) ]
.

Then clearly the solution to this is:

fu(t) = exp

(
− sup

πu∈R

[
πu(1− 1

δu
)(µu − θu(1−

1

δu
)(σuπσu))

− 1

2δu
(1− 1

δu
)πu

2 (
ν2u + σ2

u

)
− θu(1−

1

δu
)(πµu −

1

2
(π2ν2u + π2σ2

u)

+
1

2
πσ2

u)−
1

2
θu(1−

1

δu
)(−θu +

θu
δu
− 1)

(
πσ2

u

) ]
(T − t)

)
. (4.3)
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4.2.2 Continuous Graphon Solution

Note that we cannot directly take the derivative with respect to πu in the above

expression as each of the integrals contain πu. As a result, we assume Riemann

integrability and write each integral as the limit of a Riemann sum. This assumption

is true under the conditions outlined in the following theorem.

Theorem 4.2.1 (Riemann-Lebesgue Theorem). A function f is Riemann integrable

if and only if f is bounded and the set of discontinuities of f has measure 0.

This holds as we are given G is bounded, and we can bound the deterministic

constants {µu}u∈[0,1], {σu}u∈[0,1] and {νu}u∈[0,1]. Further, should we restrict G to be

a graphon that is continuous a.e., then the integrals in Equation (4.3) would be

Riemann integrable.1

Then, we may write Equation (4.3) as the following, where π̂σNu = 1
N

∑N
i=1G(u, vi)

E[πvi|FBt ]σvi and we define other Riemann sums using similar notation with vi as the

partition point:

fu(t) = exp

(
− (1− 1

δu
) sup
πu∈R

lim
N→∞

[
πu(µu − θu(1−

1

δu
)(σuπ̂σ

N
u ))

− 1

2δu
πu

2 (
ν2u + σ2

u

)
− θu(π̂µNu −

1

2
(π̂2ν2

N

u + π̂2σ2
N

u )

+
1

2
π̂σN

2

u )− 1

2
θu(−θu +

θu
δu
− 1)

(
π̂σN

2

u

)
(T − t)

])
.

In order to derive an explicit form for the solution, we must swap the supremum and

limit which can be done should the strategies be restricted to a compact set since the

other parameters are bounded. Thus we restrict πu such that πu ∈ A where A ⊆ R
1This is somewhat of a restrictive assumption on the weights players can place on one another.

While we could consider many nontrivial graphon examples like G(u, v) = uv or max(u, v), we work
to extend this in Section 4.2.3.
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is a compact set. Then we may write the following:

fu(t) = exp

(
− (1− 1

δu
) lim
N→∞

sup
πu∈R

[
πu(µu − θu(1−

1

δu
)(σuπ̂σ

N
u ))

− 1

2δu
πu

2 (
ν2u + σ2

u

)
− θu(π̂µNu −

1

2
π̂2ν2

N

u + π̂2σ2
N

u

+
1

2
π̂σN

2

u )− 1

2
θu(−θu +

θu
δu
− 1)

(
π̂σN

2

u

)]
(T − t)

)
.

Now, to take the supremum, note that for all of the above Riemann sums, we can

take the derivative with respect to πu (with the respective deterministic functions

multiplied into this sum):

d

dπu

[
1

N

N∑
i=1

G(u, vi)E[πvi |FBt ]

]
=

d

dπu

[
1

N

N∑
i=1

G(u, vi)π
vi

]

=
1

N

d

dπu

(
N∑
i=1

G(u, vi)π
vi1vi=u

)

=
1

N

d

dπu
G(u, u)πu = 0.

The first equality follows from that we pick πvi to be deterministic when taking the

supremum and thus E[πvi |FBt ] = πvi .2 Moreover, the last equality follows from the

assumption that player u puts 0 weight on themselves or that G(u, u) = 0. Taking the

derivative with respect to πu of the supremum expression and finding critical points

yields:

µu − θu(1−
1

δu
)(σuπ̂σ

N
u )−

1

δu
πu
(
ν2u + σ2

u

)
= 0.

Thus the πu that satisfies such is:

πu =
δuµu − θu(δu − 1)(σuπ̂σ

N
u )

ν2u + σ2
u

. (4.4)

2From here on out, thus, the constants defined earlier are deterministic. One example of this

being πµu :=
∫ 1

0
G(u, v)µvE[πv|FB

t ]dv which is now exactly equal to
∫ 1

0
G(u, v)µvπ

vdv.
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Using this expression to find an explicit form of the ansatz in Equation (4.3), we see

fu(t) = exp

(
− (1− 1

δu
) lim
N→∞

((µu − θu(σuπ̂σNu ))2 δu
−2 (ν2u + σ2

u)
− θu

2

(
(2π̂µNu − π̂2ν2

N

u − π̂2σ2
N

u

+ π̂σN
2

u ) + (−θu +
θu
δu
− 1)

(
π̂σN

2

u

))
.

From here, we see that all Riemann sums have been preserved thus we take the limit

and see convergence to the respective Riemann integral. Further, we know that the

Riemann integral and Lebesgue integral coincide here due to our prior assumptions;

therefore using our shorthand for the Lebesgue integrals, we obtain

ξ :=

((µu − θu(1− 1
δu
)(σuπσu)

)2
(δu − 1)

−2 (ν2u + σ2
u)

− θu
2
(1− 1

δu
)
(
(2πµu − π2ν2u − π2σ2

u

+ πσ2
u) + (−θu +

θu
δu
− 1)

(
πσ2

u

))
,

and hence the final function is

fu(t) = eξ(T−t).

This corresponds to πu
∗
= limN→∞ πu where πu is as in (4.4). This is exactly:

πu
∗
=
δuµu − θu(δu − 1)(σuπσu)

ν2u + σ2
u

. (4.5)

Normally, we would use the verification theorem to claim that the πu
∗
we solved for

is the optimal control; however, this is not so obvious with the convergence argument

we use. Thus, we prove that this is the optimal control alternatively by first denoting
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the Hamiltonian as

H(πu) :=πu(1− 1

δu
)(µu − θu(1−

1

δu
)(σuπσu))

− 1

2δu
(1− 1

δu
)πu2

(
ν2u + σ2

u

)
− θu(1−

1

δu
)(πµu −

1

2
(π2ν2u + π2σ2

u)

+
1

2
πσ2

u)−
1

2
θu(1−

1

δu
)(−θu +

θu
δu
− 1)

(
πσ2

u

)
.

For any other strategy π̂u ∈ A, we derive:

H(π̂u) = lim
N→∞

HN(π̂u)

where HN is the Riemann sum approximation of the integrals. Moreover, we claim

that since πu optimizes HN

lim
N→∞

HN(π̂u) ≤ lim
N→∞

HN(πu)

= H(πu
∗
).

Therefore, we have that H(π̂u) ≤ H(πu), ∀π̂u ∈ A and thus is the optimal control.

4.2.3 General Graphon Solution

In this section, we derive a solution for the general graphon case to broaden the

prior result for continuous graphons. The solution we find should intuitively match

up with that for the continuous case. To derive this general result, we approximate

the graphon with continuous functions then use the same Riemann approach for

each continuous function. Once we have strategies for each continuous function, we

analyze convergence and prove that this final strategy is the optimal control. In order

to approximate G with continuous functions, we must first understand the following

well-known result.
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Theorem 4.2.2 (Lusin’s Theorem). Let (X,M, µ) be a measure space, and let G :

X → R be a bounded, measurable function. For every ϵ > 0, there exists a compact

set E ⊆ X and a continuous function F : X → R such that

1. G(x) = F (x) for all x ∈ E,

2. µ(X \ E) < ϵ.

This theorem implies that within any given level of approximation ϵ > 0, one can

find a continuous function F that approximates the measurable function G closely

on a large portion of the domain, with the measure of the set where G and F differ

being less than ϵ.

For each k ∈ N, we choose ϵk = 1/k and then apply Lusin’s Theorem to obtain

the continuous function Gk and a compact set Ek with the above properties, mainly

that G = Gk on Ek. Note that as k → ∞, µ(X \ E) < 1/k decreases to 0 thus the

set where Gk and G differ decreases to being of measure 0. Therefore, as k →∞, we

have Gk(x)→ G(x) almost everywhere.

We analyze the function fu(t) as in Equation (4.3) for each Gk. Denote πσku :=∫ 1

0
Gk(u, v)π

vσvdv and we define the other approximations using similar notation. We

know then the approximate ansatz for each Gk is the following:

fku (t) = exp

(
− sup

πu∈R

[
πu(1− 1

δu
)(µu − θu(1−

1

δu
)(σuπσ

k
u))

− 1

2δu
(1− 1

δu
)πu2

(
ν2u + σ2

u

)
− θu(1−

1

δu
)(πµku −

1

2
(π2ν2

k

u + π2σ2
k

u)

+
1

2
πσk

2

u )− 1

2
θu(1−

1

δu
)(−θu +

θu
δu
− 1)

(
πσk

2

u

)]
(T − t)

)
. (4.6)

Since each Gk is continuous, we may proceed as in Section 4.2.2, by first writing

the integral as a Riemann sum, then finding the optimal control. We use that we

may interchange Gk with G as the continuous result we had derived holds for any

graphon G and, hence, the optimal control corresponding to Gk is as in Equation
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(4.4), which we denote as πuk in terms of Riemann sums. As we saw previously, these

Riemann sums converge to the Riemann integrals (and hence Lebesgue integrals by

our assumption) thus we derive Equation (4.5), which we write in terms of Gk here:

πu
∗

k =
δuµu − θu(δu − 1)(σuπσ

k
u)

ν2u + σ2
u

.

This converges in limit as k →∞ to the below since Gk(x)→ G(x) a.e..

πu
∗
=
δuµu − θu(δu − 1)(σuπσu)

ν2u + σ2
u

.

Note that this is the same expression as the continuous case. We must simply show

now that this is indeed the optimal control. We prove such by first denoting the

Hamiltonian as we did above:

H(πu) :=πu(1− 1

δu
)(µu − θu(1−

1

δu
)(+σuπσu))

− 1

2δu
(1− 1

δu
)πu2

(
ν2u + σ2

u

)
− θu(1−

1

δu
)(πµu −

1

2
(π2ν2u + π2σ2

u)

+
1

2
πσ2

u)−
1

2
θu(1−

1

δu
)(−θu +

θu
δu
− 1)

(
πσ2

u

)
.

For any other strategy π̂u ∈ A, we know that:

H(π̂u) = lim
k→∞

lim
N→∞

HN
k (π̂u)

where HN
k is the Riemann representation of the continuous approximation (i.e. with

functions Gk) of the Hamiltonian. Moreover, we claim that since πuk optimizes HN
k :

lim
k→∞

lim
N→∞

HN
k (π̂u) ≤ lim

k→∞
lim
N→∞

HN
k (πuk )

= H(πu
∗
).
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Therefore we have that H(π̂u) ≤ H(πu
∗
), for all π̂u ∈ A and we conclude that πu

∗
is

the optimal control. Rewriting the optimal control without shorthand notation:

πu
∗
=
δuµu − θu(δu − 1)(σu

∫ 1

0
G(u, v)πvσvdv)

ν2u + σ2
u

. (4.7)

4.2.4 Existence of a Nash Equilibrium

To prove that the best response we found in Equation (4.7) is the Nash equilibrium,

we show, as we did in the n-player game, that a fixed point of this mapping exists

and is unique. We again use the Banach Fixed Point Theorem stated in Theorem

3.3.1, first proving the necessary conditions.

We first define a complete metric space (L2([0, 1]), d) where L2[0, 1] denotes the set

of square-integrable functions on [0, 1]. Moreover, for f, g ∈ L2([0, 1]), the ℓ2 distance

d is written as

d(f, g) =

√∫ 1

0

(f(x)− g(x))2 dx.

Now let π : [0, 1]→ R be a function in L2[0, 1]. We know the function Ψ : L2([0, 1])→

L2([0, 1]) is the following for each u ∈ [0, 1] due to the best response derived in

Equation (4.7):

Ψ(π)u = πu =
δuµu − θu(δu − 1)(σu

∫ 1

0
G(u, v)πvσvdv)

ν2u + σ2
u

.

To show there exists a fixed point Ψ(π) = π, we prove that Ψ is a contraction

mapping then invoke the Banach Fixed Point Theorem.

Theorem 4.2.3. The function Ψ defined as above is a contraction mapping for

√√√√∫ 1

0

((
θu(δu − 1)

ν2u + σ2
u

)2(∫ 1

0

G(u, v)2(σuσv)2dv

))
du < 1.

43



Proof. We prove this by computing, for any π,π′ ∈ L2[0, 1] :

d(Ψ(π),Ψ(π′))2 =

∫ 1

0

|πu − πu′|2du.

We see that the νuµu terms cancel out and we may factor out the common terms to

get:

=

∫ 1

0

(
θu(δu − 1)

ν2u + σ2
u

)2 ∣∣∣∣σu ∫ 1

0

G(u, v)(πv − πv ′)σvdv
∣∣∣∣2 du.

Factoring again, we have

=

∫ 1

0

(
θu(δu − 1)

ν2u + σ2
u

)2 ∣∣∣∣∫ 1

0

G(u, v)(πv − πv ′)(σuσv)dv
∣∣∣∣2 du.

Now, we may use Cauchy Schwarz on the integral squared in order to get:

=

∫ 1

0

(
θu(δu − 1)

ν2u + σ2
u

)2(∫ 1

0

G(u, v)2(σuσv)
2dv

)(∫ 1

0

(πv − πv ′)2dv
)
du.

By definition of the ℓ2 distance, this is

= d(π,π′)2
∫ 1

0

(
θu(δu − 1)

ν2u + σ2
u

)2(∫ 1

0

G(u, v)2(σuσv)
2dv

)
du.

Hence, we deduce that we must have

ϵ =

√√√√∫ 1

0

((
θu(δu − 1)

ν2u + σ2
u

)2(∫ 1

0

G(u, v)2(σuσv)2dv

))
du < 1

in order for Ψ to be a contraction mapping.

As a result of the above theorem, we may invoke Banach Fixed Point Theorem

and conclude that for ϵ < 1, Ψ admits a unique fixed point, thereby proving the

existence of a Nash equilibrium.
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4.3 Stability Analysis

Informally, stability means that if the graphons differ by a small amount then the

resulting strategies differ by a small amount in expectation. To show stability of the

solution, we want to first define such a metric that captures the distance between two

graphons.

Definition 4.3.1 (Cut Norm). For graphon G, the cut norm is defined as

∥G∥□ := sup
I

∣∣∣∣∫
I×I

G(u, v) du dv

∣∣∣∣ .
Moreover, we define the following norm which is equivalent to the cut norm:

Definition 4.3.2 (L∞ → L1 operator norm).

∥G∥∞→1 := sup{∥Gφ∥L1[0,1] : φ ∈ L∞[0, 1], |φ| ≤ 1},

where Gφ(u) :=
∫ 1

0
G(u, v)φ(v) dv.

Furthermore, we know that the following relation holds by [4]:

∥g∥□ ≤ ∥g∥∞→1 ≤ 4∥g∥□ (4.8)

which we will use later in our proof. Now that we have the above facts, we proceed

to prove stability of the solution, defined formally in the theorem below.

Theorem 4.3.3. The equilibrium strategy is stable. That is, if for some ϵ > 0, where

∥G1 −G2∥□ ≤ ϵ then for the corresponding π1, π2, there exists δbound > 0 such that

E∥π1 − π2∥22 ≤ δbound
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where

π1 =
δuµu − θu(δu − 1)(σu

∫ 1

0
G1(u, v)π

vσvdv)

ν2u + σ2
u

and

π2 =
δuµu − θu(δu − 1)(σu

∫ 1

0
G2(u, v)π

vσvdv)

ν2u + σ2
u

.

Proof. By simple math,

E∥π1 − π2∥22 =
∥∥∥∥(−θu(δu − 1))

ν2u + σ2
u

(
σu

∫ 1

0

(G1(u, v)−G2(u, v))π
vσvdv

)∥∥∥∥2
2

.

Let ∆I = σu
∫ 1

0
(G1(u, v)−G2(u, v))π

vσvdv. Then,

E∥π1 − π2∥22 =
(
(−θu(δu − 1))

ν2u + σ2
u

)2

∥∆I∥22. (4.9)

We proceed to bound the ∆I by first bounding the absolute value:

|∆I| =
∣∣∣∣σu ∫ 1

0

(G1(u, v)−G2(u, v))π
vσvdv

∣∣∣∣
which is the following since σu ≥ 0:

|∆I| = σu

∣∣∣∣∫ 1

0

(G1(u, v)−G2(u, v))π
vσvdv

∣∣∣∣ .
We may normalize πvσv by

∫ 1

0
πvσvdv since πv and σv are nonnegative:

|∆I| = σu

∫ 1

0

πvσvdv

∣∣∣∣∣
∫ 1

0

(G1(u, v)−G2(u, v))
πvσv∫ 1

0
πvσvdv

dv

∣∣∣∣∣ .
Now we may define the function φ1(v) := πvσv∫ 1

0 π
vσvdv

. Note that φ1 ∈ L∞[0, 1] since

πv and σv are bounded by prior assumption and |φ1| ≤ 1 through our normalization.
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Then, we may upper bound the above quantity by the suprema over these:

|∆I| ≤ σu

(∫ 1

0

πvσvdv

)
sup
φ2

∣∣∣∣∫ 1

0

(G1(u, v)−G2(u, v))φ1(v)dv

∣∣∣∣ .
This is equivalent to the L∞ → L1 operator norm we defined in Equation (4.3.2).

Hence, we rewrite as such:

|∆I| ≤ σu

(∫ 1

0

πvσvdv

)
∥G1 −G2∥∞→1.

We group terms together and bound this quantity by the inequality relating the cut

norm to the L∞ → L1 operator norm in Equation (4.8):

|∆I| ≤ (4∥G1 −G2∥□)
(
σu

(∫ 1

0

πvσvdv

))
.

We know that both πv and σv are nonnegative and pointwise bounded thus finite at

every point. Since we are integrating over a finite region, the integral of the product of

any two of these is bounded. Therefore, let C = σu

(∫ 1

0
πvσvdv

)
for constant C > 0.

We also know that by assumption ∥G1 −G2∥□ ≤ ϵ and so we have

|∆I| ≤ 4ϵC.

We now use this to bound ∥∆I∥22. In order to bound this term, first note that by

definition of the L1 norm, we have:

∥∆I∥1 =
∫ 1

0

|∆I|du

and so we may compute a bound for the L1 norm as:

∥∆I∥1 ≤
∫ 1

0

4ϵCdu = 4ϵC.
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We also know that ∥∆I∥2 ≤ ∥∆I∥1.3 Therefore, we have

∥∆I∥2 ≤ 4ϵC.

Plugging this into Equation (4.9):

E∥π1 − π2∥22 ≤
(
(−θu(δu − 1))

ν2u + σ2
u

)2

(4ϵC)

where we may set δbound :=
(

(−θu(δu−1))
ν2u+σ

2
u

)2
(4ϵC). Hence, we conclude our solution is

stable.

3This is easy to prove by Cauchy-Schwarz.
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Chapter 5

Simulations

To understand the behavior of our Nash Equilibrium strategy, we simulate by fixing

parameters while changing others. We do this specifically in the graphon case as

this has a smooth equilibrium over the players u ∈ [0, 1] as opposed to the discrete

strategies posed by the n-player game.

5.1 Methodology

In order to simulate, we must first find πu which is not obvious from Equation (4.7).

This is because we did not find an explicit form rather showed there was a fixed

point to this mapping under some condition. To represent πu, we would thus need

to numerically find a fixed point of the mapping. The algorithm to find such is in

Algorithm 1 where we use the formula we found for πu,∗, plugging in the old value of

πu into the right hand side of the equation and solving to find a new value of πu. We

keep iterating until there is convergence.

Finding the expected terminal wealth is more complex – we generate 5000 paths

of the process Xt and average the terminal wealths XT to get E[XT ]. To generate

these paths, we first set dt to be the number of time steps in a year, here 1/250 for

the number of trading days per year. We also set N to be the total horizon T divided
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Algorithm 1 Fixed Point Calculation

function FixedPoint(µu, θu, δu, σu, νu, σv, νv)

pi old← 1.0, max it← 1000, eps← 10−3

for k ← 1 to max it do

int←
∫ 1

0
pi old×G(u, v)× σvdv

pi new← (δu × µu − θu × (δu − 1)× (σu × int))/(ν2u + σ2
u)

if |pi old− pi new| < eps then

return pi new

end if

pi old← pi new

end for

return pi old

end function

by this dt and thus N is the total number of time steps we simulate over. Now,

to generate a path for Xt, for each of these N time steps, we generate two random

samples, dWt and dBt, from the normal distribution with mean 0 and variance dt.

We then update Xt by adding Xtπu(µudt+ νudWt+σudBt) where we found πu in our

fixed point calculations above.

5.2 Mean Field Game Simulation

To simulate the MFG, we know that each agent interacts with other agents the same,

i.e. G(u, v) = 1. The symmetry of the game also means that we do not have to find

a fixed point numerically, rather we may compute the solution analytically by first

using Equation (4.7) with G(u, v) = 1:

πu =
δuµu − θu(δu − 1)(σu

∫ 1

0
πvσvdv)

ν2u + σ2
u

. (5.1)

50



We multiply this expression by σu and taking the integral over u and get

∫ 1

0

πuσudu =

∫ 1

0

δuσuµu − σuθu(δu − 1)(σu
∫ 1

0
πvσvdv)

ν2u + σ2
u

du.

Let
∫ 1

0
πuσudu = πσ. Then this is exactly:

πσ =

∫ 1

0

δuσuµu − σuθu(δu − 1)(σuπσ)

ν2u + σ2
u

du.

Rearranging, we get:

πσ

(
1 +

∫ 1

0

σ2
uθu(δu − 1)

ν2u + σ2
u

)
=

∫ 1

0

δuσuµu
ν2u + σ2

u

du.

Then, we have

πσ =
γ

1 + ψ
, (5.2)

where γ =
∫ 1

0
δuσuµu
ν2u+σ

2
u
du and ψ =

∫ 1

0
σ2
uθu(δu−1)
ν2u+σ

2
u

du. Note that this is equivalent to what

was derived in [3] where instead of expectations over the type parameters such as

Ψ = E[σ
2θ(δ−1)
ν2+σ2 ], we have these averages explicitly in terms of integrals.1 Recall that

an average of a function f(u) over [0, 1] is 1
1−0

∫ 1

0
f(u)du which is exactly what we

have. Plugging Equation (5.2) back into the expression for πu given by Equation

(5.1), the optimal strategy becomes

πu =
δuµu − θu(δu − 1)( σuγ

1+ψ
)

ν2u + σ2
u

.

With this explicit form, we may set the following parameters for the graph: µu =

0.5, θu = 0.9, σu = 0.9, νu = 0.6, γ = 1, ψ = 2 and our time horizon T = 1.

This results in the graph in Figure 5.1. In the MFG setting, that is without player

1In [3], they use similar notation ψ but φ instead to write our γ.
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Figure 5.1: Expected Wealth versus Risk Tolerance in the MFG

interactions on the individual level, this graph highlights that as risk tolerance grows,

our expected wealth grows as well. This agrees with our intuition that the more risky

an investment is, the higher expected return.

5.3 Bilinear Graphon Simulation

For the case where G(u, v) = uv, we do not have an explicit form for πu and thus

we use Algorithm 1 to find a fixed point by setting parameters conveniently. We set

similar parameters as before: µu = 0.5, θu = 0.9, σu = σv = 0.9, νu = νv = 0.6 for all

players v ̸= u and time horizon T = 1. This allows us to write the integral as

∫ 1

0

G(u, v)σvdv =

∫ 1

0

0.9uvdv

which integrates to 0.9u/2. The graph is as in Figure 5.2.

Here, due to our graphon, we know that the index coincides with the amount of

interaction agent u has with other agents. That is, if u is larger, player u interacts

more and vice versa. In the Figure 5.2 thus, we see the same pattern as we saw in

the MFG for the bilinear graphon in that as risk tolerance increases, expected wealth
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Figure 5.2: Expected Wealth versus Risk Tolerance for Different Interaction Levels

increases (regardless of the amount of interaction).

Moreover, we see that an agent that interacts less in this model tends to outper-

form agents that interact more if the agent’s risk tolerance is greater than 1. This

coincides with the solution in the CARA utility case in [6] since agents that interacted

more had lower expected terminal wealth than those that interacted less. However,

if risk tolerance is lower, it is not clear from Figure 5.2 exactly what happens. Thus,

to more closely analyze these trends, we look at the graph in Figure 5.3.

Figure 5.3: Expected Wealth versus Interaction Level for Different Risk Tolerance

In Figure 5.3, it is clear that for a smaller risk tolerance, an agent that interacts
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with a greater number of agents has a higher terminal expected wealth (albeit not

very clear for δu = 0.23). That is, the graph of expected wealths is increasing in

u when δu < 1. This agrees with a similar finding from [3] where they measure

interactions through solely the parameter θu. Here, they find that, for δu < 1, agents

invest more for a higher θu, leading to a higher terminal expected wealth. This paper

also says that as θu decreases and δu > 1, agents invest less. In our setting, we may

similarly see that only when risk tolerance is high enough (δu > 1) does an increased

number of interactions lead to a lower terminal expected wealth.
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Chapter 6

Conclusion

In this work, we introduced an individualized competition weight into the model

in [5] by Lacker and Zariphopoulou then derived the Nash Equilibrium investment

strategy both in the n-player game and the graphon game. This weighted n-player

and graphon models is somewhat similar to that of [9] introduced by Tangpi and

Zhou, although we analyze CRRA utility rather than CARA utility with constant

drift and volatility terms as well as investment in individual stocks. Moreover, our

approach to finding the optimal control for this model is similar to [5] in deriving

the HJB equation for the n-player game and graphon game. However, the work done

to prove the existence of a Nash Equilibrium, approximation techniques to find the

optimal control, and stability analysis performed in the graphon case is entirely novel.

The resulting solution coincides with the MFG when the graphon is constant and

thus exhibits similar behavior in this case. We see that increases in risk tolerance

leads to increases in expected wealth linearly. Moreover, the investment strategy we

derived, regardless of the graphon we set, behaves similarly to that for the MFG. We

compare these solutions by using θu as a proxy for G(u, v) in the original model in

[5] since both measure the amount of interactions.

Future work would attempt to find an explicit form for the Nash equilibrium πu
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rather than simply show the existence of a fixed point in both the n-player game and

graphon game. While this explicit form is found in other papers such as [3] and [5],

the averaging technique these papers use does not apply in this work as the parameter

λij or the graphon G(u, v) is a function of two players. Moroever, future work here

may try to gain a more general condition for the existence of a fixed point in the

graphon case since the condition we gain is not easily interpretable nor easily fulfilled

as opposed to the n-player game.

Furthermore, an easy way to extend this would be to introduce intermediate

consumption into the problem. We expect the n-player strategy to look the same

as the one we derived. We would also expect consumption to look similar to that

in model without the weights; that is, as in [3]. However, extending consumption to

the setting of the graphon game would be more difficult due to the approximation

techniques we used, although it should follow similarly.

Finally, a different direction in which this model could be extended is by allowing

agents to invest in multiple stocks rather than just their own stock. This idea was

explored in [9] where each player is allowed to invest in the same vector of stocks.
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